3.2.30 \(\int \frac {\cos ^2(c+d x)}{(b \sec (c+d x))^{5/2}} \, dx\) [130]

3.2.30.1 Optimal result
3.2.30.2 Mathematica [A] (verified)
3.2.30.3 Rubi [A] (verified)
3.2.30.4 Maple [C] (verified)
3.2.30.5 Fricas [C] (verification not implemented)
3.2.30.6 Sympy [F]
3.2.30.7 Maxima [F]
3.2.30.8 Giac [F]
3.2.30.9 Mupad [F(-1)]

3.2.30.1 Optimal result

Integrand size = 21, antiderivative size = 98 \[ \int \frac {\cos ^2(c+d x)}{(b \sec (c+d x))^{5/2}} \, dx=\frac {14 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{15 b^2 d \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}}+\frac {2 b \sin (c+d x)}{9 d (b \sec (c+d x))^{7/2}}+\frac {14 \sin (c+d x)}{45 b d (b \sec (c+d x))^{3/2}} \]

output
2/9*b*sin(d*x+c)/d/(b*sec(d*x+c))^(7/2)+14/45*sin(d*x+c)/b/d/(b*sec(d*x+c) 
)^(3/2)+14/15*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(si 
n(1/2*d*x+1/2*c),2^(1/2))/b^2/d/cos(d*x+c)^(1/2)/(b*sec(d*x+c))^(1/2)
 
3.2.30.2 Mathematica [A] (verified)

Time = 0.17 (sec) , antiderivative size = 73, normalized size of antiderivative = 0.74 \[ \int \frac {\cos ^2(c+d x)}{(b \sec (c+d x))^{5/2}} \, dx=\frac {\frac {336 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{\sqrt {\cos (c+d x)}}+4 \cos (c+d x) (33 \sin (c+d x)+5 \sin (3 (c+d x)))}{360 b^2 d \sqrt {b \sec (c+d x)}} \]

input
Integrate[Cos[c + d*x]^2/(b*Sec[c + d*x])^(5/2),x]
 
output
((336*EllipticE[(c + d*x)/2, 2])/Sqrt[Cos[c + d*x]] + 4*Cos[c + d*x]*(33*S 
in[c + d*x] + 5*Sin[3*(c + d*x)]))/(360*b^2*d*Sqrt[b*Sec[c + d*x]])
 
3.2.30.3 Rubi [A] (verified)

Time = 0.47 (sec) , antiderivative size = 112, normalized size of antiderivative = 1.14, number of steps used = 9, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.429, Rules used = {3042, 2030, 4256, 3042, 4256, 3042, 4258, 3042, 3119}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cos ^2(c+d x)}{(b \sec (c+d x))^{5/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\csc \left (c+d x+\frac {\pi }{2}\right )^2 \left (b \csc \left (c+d x+\frac {\pi }{2}\right )\right )^{5/2}}dx\)

\(\Big \downarrow \) 2030

\(\displaystyle b^2 \int \frac {1}{\left (b \csc \left (\frac {1}{2} (2 c+\pi )+d x\right )\right )^{9/2}}dx\)

\(\Big \downarrow \) 4256

\(\displaystyle b^2 \left (\frac {7 \int \frac {1}{(b \sec (c+d x))^{5/2}}dx}{9 b^2}+\frac {2 \sin (c+d x)}{9 b d (b \sec (c+d x))^{7/2}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle b^2 \left (\frac {7 \int \frac {1}{\left (b \csc \left (c+d x+\frac {\pi }{2}\right )\right )^{5/2}}dx}{9 b^2}+\frac {2 \sin (c+d x)}{9 b d (b \sec (c+d x))^{7/2}}\right )\)

\(\Big \downarrow \) 4256

\(\displaystyle b^2 \left (\frac {7 \left (\frac {3 \int \frac {1}{\sqrt {b \sec (c+d x)}}dx}{5 b^2}+\frac {2 \sin (c+d x)}{5 b d (b \sec (c+d x))^{3/2}}\right )}{9 b^2}+\frac {2 \sin (c+d x)}{9 b d (b \sec (c+d x))^{7/2}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle b^2 \left (\frac {7 \left (\frac {3 \int \frac {1}{\sqrt {b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{5 b^2}+\frac {2 \sin (c+d x)}{5 b d (b \sec (c+d x))^{3/2}}\right )}{9 b^2}+\frac {2 \sin (c+d x)}{9 b d (b \sec (c+d x))^{7/2}}\right )\)

\(\Big \downarrow \) 4258

\(\displaystyle b^2 \left (\frac {7 \left (\frac {3 \int \sqrt {\cos (c+d x)}dx}{5 b^2 \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}}+\frac {2 \sin (c+d x)}{5 b d (b \sec (c+d x))^{3/2}}\right )}{9 b^2}+\frac {2 \sin (c+d x)}{9 b d (b \sec (c+d x))^{7/2}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle b^2 \left (\frac {7 \left (\frac {3 \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx}{5 b^2 \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}}+\frac {2 \sin (c+d x)}{5 b d (b \sec (c+d x))^{3/2}}\right )}{9 b^2}+\frac {2 \sin (c+d x)}{9 b d (b \sec (c+d x))^{7/2}}\right )\)

\(\Big \downarrow \) 3119

\(\displaystyle b^2 \left (\frac {7 \left (\frac {6 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 b^2 d \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}}+\frac {2 \sin (c+d x)}{5 b d (b \sec (c+d x))^{3/2}}\right )}{9 b^2}+\frac {2 \sin (c+d x)}{9 b d (b \sec (c+d x))^{7/2}}\right )\)

input
Int[Cos[c + d*x]^2/(b*Sec[c + d*x])^(5/2),x]
 
output
b^2*((2*Sin[c + d*x])/(9*b*d*(b*Sec[c + d*x])^(7/2)) + (7*((6*EllipticE[(c 
 + d*x)/2, 2])/(5*b^2*d*Sqrt[Cos[c + d*x]]*Sqrt[b*Sec[c + d*x]]) + (2*Sin[ 
c + d*x])/(5*b*d*(b*Sec[c + d*x])^(3/2))))/(9*b^2))
 

3.2.30.3.1 Defintions of rubi rules used

rule 2030
Int[(Fx_.)*(v_)^(m_.)*((b_)*(v_))^(n_), x_Symbol] :> Simp[1/b^m   Int[(b*v) 
^(m + n)*Fx, x], x] /; FreeQ[{b, n}, x] && IntegerQ[m]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 4256
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[Cos[c + d*x]*(( 
b*Csc[c + d*x])^(n + 1)/(b*d*n)), x] + Simp[(n + 1)/(b^2*n)   Int[(b*Csc[c 
+ d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && IntegerQ[2* 
n]
 

rule 4258
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(b*Csc[c + d*x] 
)^n*Sin[c + d*x]^n   Int[1/Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && 
 EqQ[n^2, 1/4]
 
3.2.30.4 Maple [C] (verified)

Result contains complex when optimal does not.

Time = 0.56 (sec) , antiderivative size = 454, normalized size of antiderivative = 4.63

method result size
default \(\frac {\frac {2 \cos \left (d x +c \right )^{4} \sin \left (d x +c \right )}{9}-\frac {14 i \operatorname {EllipticF}\left (i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), i\right ) \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \cos \left (d x +c \right )}{15}+\frac {14 i \operatorname {EllipticE}\left (i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), i\right ) \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \cos \left (d x +c \right )}{15}+\frac {2 \cos \left (d x +c \right )^{3} \sin \left (d x +c \right )}{9}-\frac {28 i \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticF}\left (i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), i\right )}{15}+\frac {28 i \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticE}\left (i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), i\right )}{15}+\frac {14 \cos \left (d x +c \right )^{2} \sin \left (d x +c \right )}{45}-\frac {14 i \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticF}\left (i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), i\right ) \sec \left (d x +c \right )}{15}+\frac {14 i \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticE}\left (i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), i\right ) \sec \left (d x +c \right )}{15}+\frac {14 \cos \left (d x +c \right ) \sin \left (d x +c \right )}{45}+\frac {14 \sin \left (d x +c \right )}{15}}{d \left (\cos \left (d x +c \right )+1\right ) \sqrt {b \sec \left (d x +c \right )}\, b^{2}}\) \(454\)

input
int(cos(d*x+c)^2/(b*sec(d*x+c))^(5/2),x,method=_RETURNVERBOSE)
 
output
2/45/d/(cos(d*x+c)+1)/(b*sec(d*x+c))^(1/2)/b^2*(5*cos(d*x+c)^4*sin(d*x+c)- 
21*I*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticF( 
I*(-cot(d*x+c)+csc(d*x+c)),I)*cos(d*x+c)+21*I*EllipticE(I*(-cot(d*x+c)+csc 
(d*x+c)),I)*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*cos 
(d*x+c)+5*cos(d*x+c)^3*sin(d*x+c)-42*I*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c 
)/(cos(d*x+c)+1))^(1/2)*EllipticF(I*(-cot(d*x+c)+csc(d*x+c)),I)+42*I*Ellip 
ticE(I*(-cot(d*x+c)+csc(d*x+c)),I)*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(c 
os(d*x+c)+1))^(1/2)+7*cos(d*x+c)^2*sin(d*x+c)-21*I*(1/(cos(d*x+c)+1))^(1/2 
)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticF(I*(-cot(d*x+c)+csc(d*x+c)),I 
)*sec(d*x+c)+21*I*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/ 
2)*EllipticE(I*(-cot(d*x+c)+csc(d*x+c)),I)*sec(d*x+c)+7*cos(d*x+c)*sin(d*x 
+c)+21*sin(d*x+c))
 
3.2.30.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.11 (sec) , antiderivative size = 108, normalized size of antiderivative = 1.10 \[ \int \frac {\cos ^2(c+d x)}{(b \sec (c+d x))^{5/2}} \, dx=\frac {2 \, {\left (5 \, \cos \left (d x + c\right )^{4} + 7 \, \cos \left (d x + c\right )^{2}\right )} \sqrt {\frac {b}{\cos \left (d x + c\right )}} \sin \left (d x + c\right ) + 21 i \, \sqrt {2} \sqrt {b} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 21 i \, \sqrt {2} \sqrt {b} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )}{45 \, b^{3} d} \]

input
integrate(cos(d*x+c)^2/(b*sec(d*x+c))^(5/2),x, algorithm="fricas")
 
output
1/45*(2*(5*cos(d*x + c)^4 + 7*cos(d*x + c)^2)*sqrt(b/cos(d*x + c))*sin(d*x 
 + c) + 21*I*sqrt(2)*sqrt(b)*weierstrassZeta(-4, 0, weierstrassPInverse(-4 
, 0, cos(d*x + c) + I*sin(d*x + c))) - 21*I*sqrt(2)*sqrt(b)*weierstrassZet 
a(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))))/(b^3* 
d)
 
3.2.30.6 Sympy [F]

\[ \int \frac {\cos ^2(c+d x)}{(b \sec (c+d x))^{5/2}} \, dx=\int \frac {\cos ^{2}{\left (c + d x \right )}}{\left (b \sec {\left (c + d x \right )}\right )^{\frac {5}{2}}}\, dx \]

input
integrate(cos(d*x+c)**2/(b*sec(d*x+c))**(5/2),x)
 
output
Integral(cos(c + d*x)**2/(b*sec(c + d*x))**(5/2), x)
 
3.2.30.7 Maxima [F]

\[ \int \frac {\cos ^2(c+d x)}{(b \sec (c+d x))^{5/2}} \, dx=\int { \frac {\cos \left (d x + c\right )^{2}}{\left (b \sec \left (d x + c\right )\right )^{\frac {5}{2}}} \,d x } \]

input
integrate(cos(d*x+c)^2/(b*sec(d*x+c))^(5/2),x, algorithm="maxima")
 
output
integrate(cos(d*x + c)^2/(b*sec(d*x + c))^(5/2), x)
 
3.2.30.8 Giac [F]

\[ \int \frac {\cos ^2(c+d x)}{(b \sec (c+d x))^{5/2}} \, dx=\int { \frac {\cos \left (d x + c\right )^{2}}{\left (b \sec \left (d x + c\right )\right )^{\frac {5}{2}}} \,d x } \]

input
integrate(cos(d*x+c)^2/(b*sec(d*x+c))^(5/2),x, algorithm="giac")
 
output
integrate(cos(d*x + c)^2/(b*sec(d*x + c))^(5/2), x)
 
3.2.30.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\cos ^2(c+d x)}{(b \sec (c+d x))^{5/2}} \, dx=\int \frac {{\cos \left (c+d\,x\right )}^2}{{\left (\frac {b}{\cos \left (c+d\,x\right )}\right )}^{5/2}} \,d x \]

input
int(cos(c + d*x)^2/(b/cos(c + d*x))^(5/2),x)
 
output
int(cos(c + d*x)^2/(b/cos(c + d*x))^(5/2), x)